N-(Diphenylphosphinothioyl)hydroxylamine Transposition of O and S in its *O*-Benzoyl Derivative

Martin J.P. Harger

Department of Chemistry, The University, Leicester LE1 7RH, UK

Abstract: N-(Diphenylphosphinothioyl)hydroxylamine has been prepared from $Ph_2P(S)Cl$ using $H_2NOSiMe_3$. The derivative $Ph_2P(S)NHOCOPh$ rearranges to $Ph_2P(O)NHSCOPh$ with base; this transposition of O and S seems to require a 3-membered ring comprising P, S and N atoms.

A group migrates from P to N when derivatives of N-phosphinoylhydroxylamines such as 1 (Z = H) rearrange with base, e.g. the sulphonyl derivative $1 (Z = SO_2Me)$ gives the phosphonamidate 3 with NaOMe in MeOH.¹ Formally these rearrangements proceed via 3-co-ordinate P^V intermediates (e.g. 2), analogous to the isocyanates formed in Lossen rearrangements. Such intermediates are also formed in other types of reaction, not involving rearrangement.^{2,3} For these, replacing P = O by P = S has little effect on the rate in some cases,² but in others it makes the 3-co-ordinate P^V species easier to form.³ We therefore wanted to discover how changing P = O to P = S influences the reactivity of compounds such as 1 (Z = leaving group).

The phosphinothioic chloride 4 was allowed to react with H₂NOSiMe₃-Et₃N in CH₂Cl₂ overnight. Removal of the TMS protecting group with MeOH gave the *N*-phosphinothioylhydroxylamine 5 as a stable crystalline solid (71 %), m.p. 120 – 121 °C. This is apparently the first thiophosphoryl hydoxylamine to be prepared,⁴ but its structure seems secure: m/z 249 (M⁺, 30%) and 217 (M⁺ – NHOH, 100); v_{max}.(Nujol) 3305 and 3195 cm⁻¹; δ_P (CH₂Cl₂) 66.6; δ_H (CD₃SOCD₃) 8.36 (1 H, d, J_{PH} 7.9), 8.14 (1 H, d, J_{PH} 8.6) and 7.9 – 7.4 (10 H, m). Attempts to prepare sulphonyl derivatives were unsuccessful (they seem to be unstable), but with PhCOCl-Et₃N the benzoate 7 was readily obtained: m.p. 95.5 – 97 °C; m/z 353 (M⁺, 20 %) and 105 (100); v_{max}. (Nujol) 3180 and 1730 cm⁻¹; δ_P (CDCl₃) 65.4; δ_H (CDCl₃) 8.38 (1 H, s, NH) and 8.15 – 7.2 (15 H, m).

With MeOH-NaOMe (1.2 mol equiv.), the benzoate 7 dissolved and reacted over 15 min, but not by a

Lossen-like rearrangement. The dominant product (δ_p 25.6; 91 %) was the phosphinic amide 9,⁵ having both Ph groups still attached to P, but with O in place of S. The minor product was the phosphinothioate 6 (δ_p 56.3; 9 %), and methyl benzoate (~ 83 % by GLC) and sulfur were byproducts. Monitoring the reaction by ³¹P NMR spectroscopy revealed that the phosphinic amide was not formed directly, but rather via a short-lived intermediate, δ_p 31.8. By using a lower temperature (*ca*. 5 °C) and vigorous shaking, and quenching the reaction (CF₃CO₂H) after 3 min, it was possible to isolate the intermediate in a sufficiently pure state for tentative identification as the rearrangement product 8: *m/z* 353 (M⁺, 25 %) and 105 (100);

 v_{max} (Nujol) 3060, 2700, 1685 (C = O) and 1200 cm⁻¹ (P = O). In support of this, treatment of 1 (Z = SO₂Me) with NaSCOPh gave a product (m.p. 155 – 156 °C) having the same R_f and δ_P values, and similar spectroscopic characteristics. This product, moreover, was converted quantitatively into the phosphinic amide 9 and methyl benzoate with MeOH–NaOMe. It therefore seems clear that the principal primary reaction of the benzoate 7 with base is indeed rearrangement to 8, with transposition of S and O atoms. Remarkable though this is, there are some precedents for the interchange of S and O atoms in the chemistry of thiophosphoryl compounds.⁶

As regards the mechanism of the rearrangement, the function of the base must surely be to generate the nitrogen anion 10 (Z = COPh); transposition of the S and O atoms might then proceed as shown, leading

to the rearranged nitrogen anion 11. Whatever the precise detail, the crucial point is surely that the S atom on phosphorus, rather than a Ph group, displaces the leaving group from nitrogen. Phenyl migration to the N atom is suppressed, and Lossen-like rearrangement does not occur.

REFERENCES AND NOTES

- 1. Harger, M. J. P.; Smith, A. J. Chem. Soc., Perkin Trans. 1 1985, 1787; 1987, 683.
- Kawashima, T.; Miki, Y.; Tomita, T.; Inamoto, N. Chem. Lett. 1986, 501; Jankowski, S.; Quin, L. D. J. Am. Chem. Soc. 1991, 113, 7011, and references cited in these.
- Breslow, R.; Katz, I. J Am. Chem. Soc. 1968, 90, 7376; Gerrard, A. F.; Hamer, N. K. J. Chem. Soc. (B) 1969, 369; Harger, M. J. P. J. Chem. Soc., Perkin Trans. 2 1991, 1057.
- 4. New compounds 5, 7 and 8 were fully characterised by spectroscopy and elemental analysis.
- 5. Harger, M. J. P. J. Chem. Soc., Perkin Trans 2 1980, 154.
- Creary, X.; Inocencio, P. A. J. Am. Chem. Soc. 1986, 108, 5979; DeBruin, K. E.; Boros, E.E. Phosphorus, Sulfur and Silicon 1990, 49/50, 139; J. Org. Chem. 1990, 55, 6091.

(Received in UK 24 August 1993; accepted 1 October 1993)